画像認識を用いた紛失物探索システムの開発

大阪府立四條畷高等学校

Abstract

It is difficult to find lost items such as keys or stationery in a room. We thought of developing a system to find lost items using image recognition. We made an image dataset of stationery that is often used, small, and easy to lose, and created an object detection model.

研究背景

家の中で落としてしまった鍵や文房具などの紛失物を見 つけるのは大変である。

あるアンケート調査[1]によると、<u>6割以上</u>が1週間以内に家の中で物を失くしてしまう。

中でも「床に落ちて気づかない」「家具の下に入ってし まい見つからない」といった状況がある。

紛失物を見つける既存技術 ➡ 紛失防止タグ タグを取り付けることを前提、紛失後に使用不可 小型の物は取り付けが困難、使いやすさや見た目に影響

目的

画像認識技術を用いて、紛失物を自動で探す システムを開発し、人間が紛失物を探す手間 を軽減することを目標とする。

手法・開発

物体検出モデルの作成

室内環境での活用を想定した場合、日常的に使用され、紛失しやすい文房具を対象とした。なかでも比較的小型である消しゴム、ペン、ペンキャップ、スティックのり、クリップの5種類の文房具を識別できるようにデータセットを作成した。

- 1. 画像データを一種類につき500枚、計2500枚 撮影。
- 2. アノテーションツールRoboflowを用いてデータセットを作成。明るさ、ぼかしなどの条件を変化してデータを拡張し学習用データ5000枚、テスト用データ500枚を用意。
- 3. 学習用データを用いて物体検出アルゴリズムであるYOLO^[2]用に物体検出モデルを作成。
- 4. テスト用データを用いて物体検出精度である mAPを算出。

結果・考察

mAP@0.5は0.992

mAP@0.5:0.95は<u>0.794</u> と算出された。

学習回数ごとにmAPの値が上昇し、適切に学習が 行われた。

mAPの値から、物体の種類の認識精度はかなり高いと考察できる。

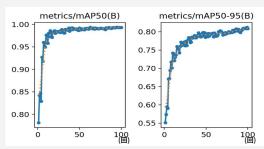


図2 学習回数ごとのmAPの値

横軸…学習回数、縦軸…mAP

mAPとは物体検出モデルの精度を評価する重要な指標。 0~1の値で算出され、1に近いほど検出精度が高い。

mAP@0.5はIoU(認識した位置とテストデータとの物体 の重なり具合)の閾値を0.5としたときの値 mAP@0.5:0.95はIoUを 0.5~0.95まで0.05刻みで変化させ平均した値

今の課題・今後の予定

- ・室内を探索するロボットとカメラを用いて、今回作成した物体検出モデルで自動で 紛失物を発見できるようにする。
- ・検出できる物体の種類を増やす。

参考文献 • 引用文献

- •[2] Ultralytics YOLO, https://docs.ultralytics.com/ (参照 2025-9-29)