リグニン資化真菌とセルロース資化真菌の並行発酵による

木質セルロースの糖化

大阪府立園芸高等学校 バイオ研究部2年

背景・目的

バイオ研究部では、草食動物の腸内細菌でセルロース木質資源 の糖化研究に取り組んできたが、糖化効率が低く課題であった。 私は、文献調査で木質セルロース分解の阻害要因としてリグニ ンがあることを知り、セルロース分解と並行してリグニン分解が できれば糖化効率を改善できると考えた。

今回、学校校内の朽木などから純粋分離したリグニン資化菌とセ ルロース資化菌を用い並行発酵させるオカクズの糖化技術の可能 性について実験を行った。

実験計画

実験1.リグニン・セルロース資化真菌の選抜 実験2.リグニン・セルロース資化真菌の並行発酵によるオカク

糖化実験

選出答が早年のDNIA公共による目中

リグニン・セルロース資化真菌の選抜

<材料>炭素源をリグニンとした培地で分離したリグニン資化 真菌5株と炭素源をセルロースとした培地で分離したセルロー スシケ真菌15株を使用した。

<方法>

- ①オガクズ3gに炭素源を除い た真菌用培地(表1)10mL を添加し、オートクレーブで 滅菌した。
- ② リグニンおよびセルロース 資化性の真菌を植菌し30℃ 6日間培養した。
- ③培養物に水100mLを混和し、 させた。

表1リグニン・セルロース資化性 真菌の選抜に使用した炭素源除去 培地組成

炭素源除去真菌用培地

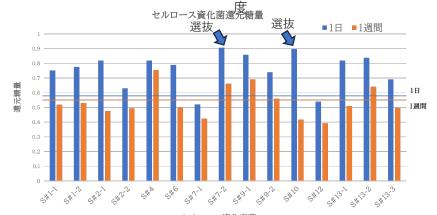
酵母ナイトロジャンベース 0.67% 酵母エキス 0.05% カザミノ酸 寒天 рΗ

50°Cで7日間静置し、発酵糖化

④静置1日後と7日後のサンプル中の還元糖量をソモギーネルソ ン法で測定した。

<結果>

リグニン資化真菌


・#R3株と#R6株の2株を 選抜した(図1)。

セルロース資化真菌

・#S7-2株と#S10株の2 株を選抜した(図2)。

図1.リグニン資化性真菌で糖化し たオガクズから得られた還元糖濃

セルロース資化真菌 図 2 セルロース資化性微生物で得られたオガクズからの還元糖濃度

リグニン・セルロース資化真菌の並行処理 実験 2

<材料>実験1で選抜したリグニン資化真菌2株 لح

セルロース資化真菌2株を使用した <方法> ゼルローヘ貝に呉函といる 医力した ①図実験』と同様にオガクズを炭素源としてリグ ニン資化菌 2 株とセルロース資化菌 2 株をそれぞ れ6日間培養した。

- ①で得られた培養物を単独または組み合わせ て混和し、水100mLを入れ、50℃で7日間静置 し、発酵糖化させた。
- ③静置1日後と7日後のサンプル中の環元糖量を ソモギーネルソン法で測定した。

セルロース資化選抜 リグニン資化選抜

選抜したリグニン 図 3 セルロース資化真菌

図5リグニン セルロース資化 真菌による オガクズ糖化液 (糖化一週間)

〈結果〉・単独株による発酵よりリグニン資化菌とセルロース資化菌の並 行発酵の方が還元糖量が増加した

図4 リグニン・セルロース並行処理で得らたオガクズからの還元糖量

選抜資化真菌のDNA分析による同定 実験3

〈材料〉選抜したリグニン資化真菌2株・セルロース資化真菌2株を使用した。 〈方法〉

- 0.05% (1) リグニン・セルロース資化真菌に対して園芸高校バイオサイエンス科の実習 常法に従い核DNA・ITS領域の塩基配列を決定した。
 - ②決定した塩基配列を米国NCBIサイトでBLAST検索を実施し、種同定を行った。 〈結果〉

表2. リグニン資化菌とセルロース資化菌各2株から得られたITS領域塩基 配列に基づく米国NCBIサイトのBLAST検索を用いた同定結果とその菌の特徴

分離実験		ITS	Taxonomy(分類)					Descriptions(概要)		(概要)	
資化性	分離株 Code	Query Length (照会長)	ドメイン	科名	属	種小名	和名	Score	Query- cover	Per ident	特徴・有用性
リグニン 資化菌	#R3	629	fungi (菌界)	Hypocreaceae ボタンタケ科	Trichoderma	hamatum	ツチアオ カビ	1153	100%	99,84%	有機物の分解能力 土壌病害防除資材
	#R6	610	fungi (菌界)	Aspergillaceae アスペルギルス科	Aspergillus	niger	クロコウジ カビ	1120	100%	99.84%	有機酸や各種酵素 剤の製造に用いら れる
セルロース 資化菌	#S7-2	587	fungi (菌界)	Aspergillaceae アスペルギルス科	Aspergillus	aculeatus	_	1062	99%	99.49%	多種のセルラーゼ ヘミセルラーゼを分 泌
	#S10	559	fungi (菌界)	Nectriaceae ベニアワツブタケ科	Fusarium	incarnatum	_	1018	99%	99.82%	植物病原菌

まとめ

・木質セルロース資源の糖化についてその阻害要因となっているリグ ニンを

その資化菌を用いた並行発酵で糖化効率を改善できた。

・利用できる資化菌について同定することができた。

は献糖化効率を上げるための発酵条件の検討を進めたい。

微生物利用、中西載慶著、2014年、実教出版

応用微生物学実験 実験書 2004 年度版、京都大学農学部

橋本ルイコラ、*Aspergillus niger* とその近縁種黒麹菌のマイコトキシン産生性及び系統 解析、Mycotoxins, 63 (2), 179-186 (2013)

片岡良太、多彩な機能を有する土壌糸状菌Trichoderma属菌の農業利用、日本農薬学会誌 ,47(2), 121 國武,絵美、 *Aspergillus aculeatus* におけるセルラーゼ・ヘミセルラーゼ遺伝子の発現 制御機構に関する分子生物学的研 究、大阪府立大学博士 (応用生命科学) 学位論文 2012 年 外側正之、植物病原菌としての*Fusarium*属菌、アグリフォ ・レポート創刊号静岡県立農林環境専門職大学 生産環境経

営学部